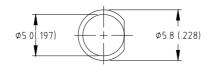


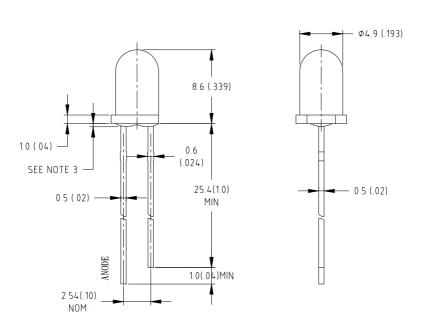
Preliminary

LL-503VM2E-011

**DATA SHEET** 

QC: ENG: Prepared By:


| Part No.   LL-503VM2E-011   Spec No.   S/N-02022002D   Page | t No. |
|-------------------------------------------------------------|-------|
|-------------------------------------------------------------|-------|




## **Features:**

- ♦ High intensity
- ♦ Standard T-1 3/4 diameter package
- ♦ General purpose leads
- ♦ Reliable and rugged

# **Package Dimensions:**





| Part NO. Chip Material |         | Lens Color     | Source Color     |  |
|------------------------|---------|----------------|------------------|--|
| LL-503VM2E-011         | AlGaInP | White Diffused | Super Bright Red |  |

#### **Notes:**

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm 0.25$  mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.
- **6.** This data-sheet only valid for six months.

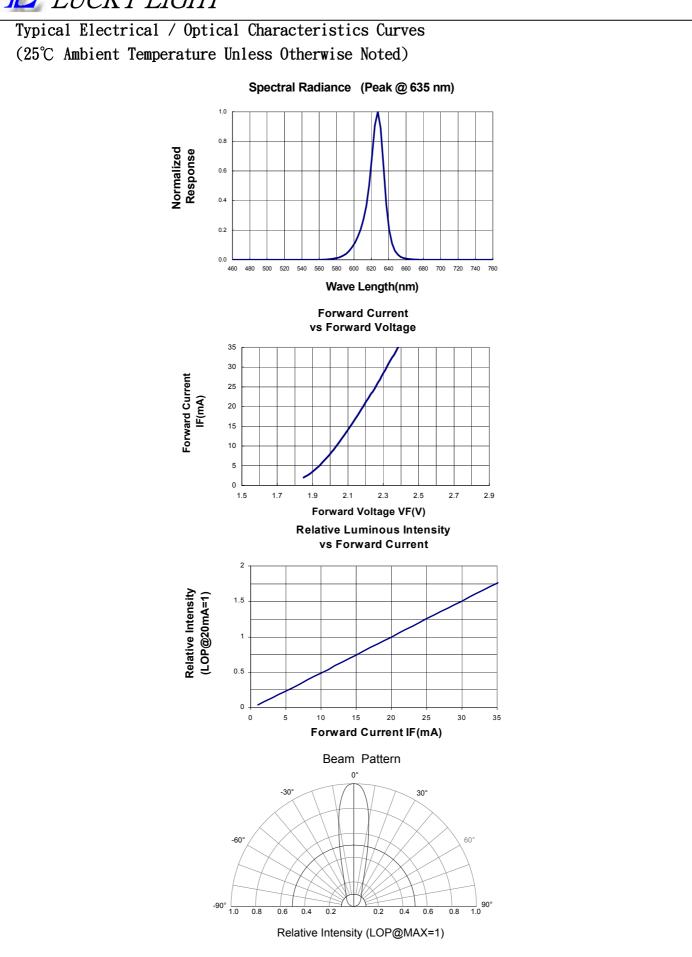
| Part No. | LL-503VM2E-011 | Spec No. | S/N-02022002D | Page | 2 of 4 |
|----------|----------------|----------|---------------|------|--------|
|----------|----------------|----------|---------------|------|--------|



## Absolute Maximum Ratings at Ta=25℃

| Parameter                                                    | MAX.                | Unit  |  |
|--------------------------------------------------------------|---------------------|-------|--|
| Power Dissipation                                            | 100                 | mW    |  |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms Pulse Width) | 100                 | mA    |  |
| Continuous Forward Current                                   | 35                  | mA    |  |
| Derating Linear From 50℃                                     | 0.4                 | mA/°C |  |
| Reverse Voltage                                              | 5                   | V     |  |
| Operating Temperature Range                                  | -40°C to +80°C      |       |  |
| Storage Temperature Range                                    | -40°C to +80°C      |       |  |
| Lead Soldering Temperature [4mm(.157") From Body]            | 260°C for 5 Seconds |       |  |

## Electrical Optical Characteristics at Ta=25°C


| Parameter                | Symbol           | Min. | Тур. | Max. | Unit | Test Condition                |  |
|--------------------------|------------------|------|------|------|------|-------------------------------|--|
| Luminous Intensity       | Iv               | 1500 | 3000 | 6000 | mcd  | I <sub>f</sub> =20mA (Note 1) |  |
| Viewing Angle            | 2	heta 1/2       | 25   | 30   | 35   | Deg  | (Note 2)                      |  |
| Peak Emission Wavelength | λp               | 630  | 635  | 640  | nm   | I <sub>f</sub> =20mA          |  |
| Dominant Wavelength      | λd               | 625  | 630  | 635  | nm   | I <sub>f</sub> =20mA (Note 3) |  |
| Spectral Line Half-Width | Δλ               | 15   | 20   | 25   | nm   | I <sub>f</sub> =20mA          |  |
| Forward Voltage          | $V_{\mathrm{f}}$ | 1.8  | 2. 2 | 2. 7 | V    | I <sub>f</sub> =20mA          |  |
| Reverse Current          | IR               |      |      | 100  | μA   | V <sub>R</sub> =5V            |  |

#### Notes:

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2.  $\theta_{1/2}$  is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength ( $\lambda d$ ) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

| Part No. | LL-503VM2E-011 | Spec No. | S/N-02022002D | Page | 3 of 4 |
|----------|----------------|----------|---------------|------|--------|
|----------|----------------|----------|---------------|------|--------|



