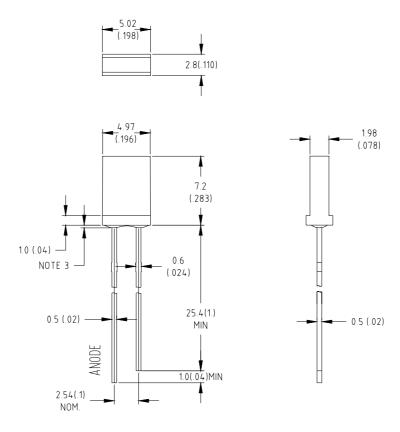
LL-253BC2J-002


DATA SHEET

QC: ENG: Prepared By:

Features:

- ♦ 2x5mm rectangular package
- ♦ General purpose leads
- ♦ Reliable and rugged

Package Dimensions:

Part NO.	Chip Material	Lens Color	Source Color	
LL-253BC2J-002	InGaN	Water Clear	Blue	

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.
- 6. Precautions for ESD:
 STATIC SHIELD Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.
- 7. This data-sheet only valid for six months.

Part No.	LL-253BC2J-002	Spec No.	S/N-02100922D	Page	2 of 4
----------	----------------	----------	---------------	------	---------------

Absolute Maximum Ratings at Ta=25

Parameter	MAX.	Unit	
Power Dissipation	100	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA	
Continuous Forward Current	30	mA	
Derating Linear From 50	0.4	mA/	
Reverse Voltage	5	٧	
Operating Temperature Range	-40 to +80		
Storage Temperature Range	-40 to +80		
Lead Soldering Temperature [4mm(.157") From Body]	260 for 5 Seconds		

Electrical Optical Characteristics at Ta=25

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Luminous Intensity	Iv	100	250	500	mcd	I _f =20mA (Note 1)	
Viewing Angle	2 1/2	90	100	110	Deg	(Note 2)	
Peak Emission Wavelength	р	455	460	465	nm	I _f =20mA	
Dominant Wavelength	d	460	465	470	nm	I _f =20mA (Note 3)	
Spectral Line Half-Width		20	25	30	nm	I _f =20mA	
Forward Voltage	V _f	2.8	3.5	4.0	V	I _f =20mA	
Reverse Current	I R			100	μΑ	V _R =5V	

Notes:

- 1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. $_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength (d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Part No.	LL-253BC2J-002	Spec No.	S/N-02100922D	Page	3 of 4
----------	----------------	----------	---------------	------	---------------

Typical Electrical / Optical Characteristics Curves Ambient Temperature Unless Otherwise Noted) 25 Spectral Radiance (Peak @ 460nm) 0.8 Normalized Response 0.4 0.0 400 Wave Length(nm) **Forward Current** vs Forward Voltage Forward Current IF(mA) Forward Voltage VF(V) **Relative Luminous Intensity** vs Forward Current Relative Intensity (LOP@20mA=1) Forward Current IF(mA) Beam Pattern 30° -60 60° Relative Intensity (LOP @ MAX=1)